[Ni(edt-CN)2]²**· , a novel paramagnetic nickel dithiolene complex analog of Ni(mnt)2** 2**· with two cyano groups only**

Marc Fourmigué* and Josep N. Bertran

Sciences Moléculaires aux Interfaces, CNRS FRE 2068, Institut des Matériaux Jean Rouxel, 2, rue de la Houssinière, BP32229, 44322 Nantes cedex 3, France. E-mail: fourmigue@cnrs-imn.fr

Received (in Cambridge, UK) 7th August 2000, Accepted 18th September 2000 First published as an Advance Article on the web 12th October 2000

The preparation, X-ray crystal structures and electrochemical properties of bis(2-cyano-1,2-ethanedithiolate) nickelate $[\text{Ni}(\text{edt-CN})_2]^{2-/-}$ are described for both oxida**tion states together with the singlet–triplet behaviour of the** PPh_4 ⁺ salt of the paramagnetic $[Ni(edt-CN)_2]$ ⁻· complex.

The construction of conducting or magnetic solids from the assembling of transition metal centers and organonitrile anion radical molecules¹ such as TCNE⁻; DCNQI⁻· or TCNQ⁻· has

revealed extraordinary materials such as the metallic $Cu(DCNQI)₂$ ² the electrically bistable³ Cu(TCNQ) or a bulk ferromagnet from V with TCNE (TCNE = tetracyanoethylene).4 By comparison and most surprisingly, the parallel coordination chemistry of the corresponding nickel dithiolene complexes with the maleonitriledithiolate ligand (mnt^{2-}) is virtually untouched and only a few salts of the diamagnetic $Ni(mnt)_{2}^{2-}$ have been reported with $Ag(PPh_{3})_{2}^{+}$ and CuI.^{5,6} The crystalline salts derived from DCNQI anions incorporating only two nitrile groups as well as the rich chemistry of the $mnt²$ complexes⁷ prompted us to investigate the numerous possibilities that would be offered by the unknown corresponding nickel dithiolene complex bearing only two cyano groups, *viz.* bis(2-cyano-1,2-ethanedithiolate)nickelate [Ni(edt- CN_{2}]^{*n*-} (*n* = 1 or 2). We describe here the synthesis of this novel complex system together with its electrochemical properties and report and analyse the X-ray crystal structures of the PPh_4 ⁺ salts of both the diamagnetic $[Ni(edt-CN)_2]^2$ ⁻ dianion and the paramagnetic radical anion $[Ni(edt-CN)_2]$ ⁻. This complex offers extensive possibilities for the elaboration of promising materials with conducting or magnetic properties by varying the nature of the counter cation, closed-shell inorganic $(Na⁺, Cu⁺, Ag⁺ or NH₄⁺)$ or organic $(R₄N⁺, PyH⁺, ...)$ cations as well as open shell organic (TTF⁺⁺, BEDT-TTF⁺⁺) or organometallic ($\overline{C}p^*{}_2\overline{F}e^+$) cations.

The dithiocarbonate **4**† precursor of the dithiolene ligand was prepared by a novel route (Scheme 1) which avoids the use of cyanoacetylene8 in the reported preparation of **3** or that of activated Zn complexes in the reported preparation of **4**.9 The easily available ester **1**10 was successively converted into the corresponding amide 2 with NH₃ in MeOH in 72% yield, into the nitrile 3 by POCl₃ dehydration¹¹ in 75% yield before oxymercuration to the dithiocarbonate **4** in 84% yield. Treatment of **4** with 2 equiv. of MeONa followed by addition of 0.5 equiv. NiCl₂·6H₂O and PPh₄Cl afforded the air-stable dianionic

Scheme 1 *Reagents and conditions*: i, NH₃/MeOH; ii, 1 equiv. POCl₃, tetramethylene sulfone, 100 °C, 7 h; iii, Hg(OAc)₂, CHCl₃-AcOH, 2 h; iv, 2 equiv. MeONa, MeOH, 0.5 NiCl₂·6H₂O, PPh₄Cl/H₂O; v, 0.5 I₂.

diamagnetic $[PPh_4+]_2[Ni(edt-CN)_2^{2-}]$ salt. The corresponding one-electron oxidation product, [PPh₄⁺][Ni(edt-CN)₂⁻⁻], was obtained by iodine oxidation and recrystallisation from methanol. Cyclic voltammetry of the dianionic $Ni(edt-CN)₂²⁻$ salt (Fig. 1) shows that it oxidises reversibly to the monoanionic Ni(edt-CN)₂⁻· at -0.31 V *vs*. SCE while an irreversible process is observed at +0.65 V, a behaviour also observed for $Ni(mnt)_{2}^{n-}$ (0.226 V for Ni $(mnt)_{2}^{2-/-}$ with an ill-defined oxidation wave around 1 V ¹² but with a cathodic shift attributable to the presence of only two cyano groups. Single crystal X-ray structures‡ of both salts show that the nickel complexes adopt the same square-planar structure in the two different oxidation states (Fig. 2) with a *trans* orientation of the two cyano groups. It is likely that both *cis* and *trans* orientations are in equilibrium in solution while the most symmetrical *trans* isomer exhibits a lower solubility. The observed shortening of the Ni–S and C–S bonds upon oxidation of the dianion to the monoanion is in accordance with the antibonding character of

Fig. 1 Cyclic voltammetry of $[PPh_4]_2[Ni(edt-CN)_2]$, in MeCN with 0.5 M $NBu_4^nPF_6$ as electrolyte at a scan rate of 100 mV s⁻¹.

Fig. 2 ORTEP view (with 50% probability displacement ellipsoids) of the radical anion $[Ni(edt-CN)_2]$ ⁻ in the 1:1 $[PPh_4][Ni(edt-CN)_2]$ salt.

Table 1 Important bond distances (\AA) in [Ni(edt-CN)₂]^{2-/-•} together with a representation of the π -type HOMO of [Ni(edt-CN)₂]²⁻

those bonds in the dianion HOMO shown in Table 1. Similarly the antibonding character of the C \equiv N bonds is reflected by an increase in $V(\text{C=N})$, from 2180 cm⁻¹ in the dianion to 2205 cm⁻¹ in the monoanion. In the 2:1 [PPh₄+]₂[Ni(edt-CN)₂²⁻] salt, two crystallographically independent dianions, each of them on an inversion centre, are fully isolated from each other by the bulky PPh_4 ⁺ cations. On the other hand, in the 1:1 [PPh₄⁺][Ni(edt-CN)₂⁻⁻] salt, the open-shell anions, in general positions in the unit cell, associate into inversion-centered diads with a unusual overlap (Fig. 3) and a short plane-to-plane distance of $3.519(3)$ Å. The temperature dependence of the SQUID magnetic susceptibility for this salt (Fig. 4) exhibits a maximum at 23 K and is satisfactorily fitted with the Bleaney– Bowers¹³ expression of the susceptibility¹⁴ of singlet–triplet behaviour with $|J/k| = 37.5(2)$ K, in accordance with the diad structure. Preliminary metathesis experiments show that a highly insoluble precipitate is obtained upon addition of $AgBF₄$ to [PPh4 +][Ni(edt-CN)2 2**·**] solutions while the Cu+ salt obtained from $Cu(MeCN)₄BF₄$ is much more soluble. Charge-transfer salts are also being investigated with organic (TTF⁺⁺) and organometallic (Cp* 2Fe+**·**) radical cations as well as with functionalized TTF molecules bearing hydrogen bonding groups or halogen atoms able to interact in the solid state with the cyano group.

Fig. 3 The peculiar overlap between two $[Ni(edt-CN)₂]$ ⁻· radical anions in the $1:1$ [PPh₄][Ni(edt-CN)₂] salt.

Fig. 4 Temperature dependence of the magnetic susceptibility of the 1:1 [PPh4][Ni(edt-CN)2] salt. The solid line is a fit to the Bleaney–Bowers equation (see text) together with a low-temperature Curie tail encompassing 2.7% magnetic defects.

Notes and references

 \dagger *Selected data* for 2: yellow crystals; mp 225–226 °C (MeOH), $\delta_H(400)$ MHz, d_6 -DMSO), 3.36 (s, 2H, NH₂), 8.18 (s, 1H, CH); $\delta_C(100 \text{ MHz}, d_6$ - DMSO), 134.2 (CH), 143.7 (CCONH₂), 160.0 (C=O), 213.9 (C=S). v_{max} (KBr)/cm⁻¹; 1651 (C=O), 1084 (C=S). MS (EI) m/z (%) 177 (100, M⁺) (Anal. Calc. for C₄H₃NOS₃ (177.35): C, 27.19; H, 1.71; N, 7.90; S, 54.27. Found: C, 27.19; H, 1.67; N, 7.71; S, 53.32%). For **3**: yellow crystals; mp 96 °C (lit.:8 100–101 °C, $\delta_H(400 \text{ MHz}, \text{CDCl}_3)$, 7.73 (s, 1H, CH); $\delta_C(100 \text{ MHz}, \text{CDCl}_3)$ MHz, CDCl₃), 109.7 (CCN), 112.2 (C=N), 142.3 (CH), 207.7 (C=S). v_{max} (KBr)/cm⁻¹; 1058 (C=S), 2218 (C=N). MS (EI) m/z (%) 159 (100, M⁺) (Anal. Calc. for C₄HNS₃ (159.257): C, 30.17; H, 0.63; N, 8.80; S, 60.40. Found: C, 30.14; H, 0.70; N, 8.28; S, 60.1%). For **4**: white crystals; mp 60–63 °C, $\delta_H(400 \text{ MHz}, \text{CDCl}_3)$, 7.61 (s, 1H, CH); $\delta_C(100 \text{ MHz}, \text{CDCl}_3)$, 103.7 (CCN), 111.3 (C \equiv N), 134.0 (CH), 188.0 (C=O). v_{max} (KBr)/cm⁻¹; 1636 (C=O), 2229 (C=N). (lit.:9 1638, 2235), MS (EI) m/z (%) 143 (100, M⁺⁺) (Anal. Calc. for C₄HNOS₂ (143.190): C, 33.57; H, 0.70; N, 9.79; S, 44.76. Found: C, 33.78; H, 0.83; N, 9.43; S, 43.68%). For [PPh₄]₂[Ni(edt-CN)₂]: $v_{\text{max}}(\text{KBr})/\text{cm}^{-1}$; 2180 (C=N). (Anal. Calc. for C₅₄H₄₂N₂NiPS₄ (967.85): C, 67.01; H, 4.37; N, 2.89; S, 13.25. Found: C, 66.61; H, 4.21; N, 2.84; S, 13.41%). For [PPh₄][Ni(edt-CN)₂]: $v_{\text{max}}(\text{KBr})/\text{cm}^{-1}$; 2204 (C \equiv N). (Anal. Calc. for $C_{30}H_{22}N_2NiPS_4$ (628.45): C, 57.34; H, 3.53; N, 4.46. Found: C, 57.09; H, 3.47; N, 4.32%).

 \ddagger *X-Ray data* for [PPh₄]₂[Ni(edt-CN)₂] and [PPh₄][Ni(edt-CN)₂] were collected on a Stoe Imaging Plate diffractometer (IPDS) with Mo-Ka radiation, $\lambda = 0.71073$ Å at $\overline{T} = 293(2)$ K. The structures were solved by direct methods and refined against F^2 using the SHELXTL5.04 set of programs. Hydrogen atoms were introduced at calculated positions and not refined (riding model).

Crystal data for $[PPh_{4}]_2[Ni(edt-CN)_2]$: $C_{54}H_{42}N_2NiP_2S_4$, $M = 967.79$, monoclinic, space group $P2_1/n$, $a = 20.523(4)$, $b = 11.220(2)$, $c =$ 21.304(4) Å, $\beta = 107.33(3)$ °, $V = 4683(1)$ Å³, $Z = 4$, $D_c = 1.373$ g cm⁻³, μ = 0.701 mm⁻¹, data collected = 35954, unique data = 9096 (R_{int} = 0.061) of which 5396 with $I > 2\sigma(I)$, $R(F) = 0.058$, $wR(F^2) = 0.163$ for 571 parameters.

For [PPh₄][Ni(edt-CN)₂]: C₃₀H₂₂N₂NiPS₄, M = 628.42, triclinic, space group \overline{PI} , $a = 11.394(1)$, $b = 11.510(1)$, $c = 12.826(1)$ Å, $\alpha = 64.264(10)$, $\beta = 72.777(12), \gamma = 83.074(12)^\circ, V = 1447.2(3) \text{ Å}^3, Z = 2, D_c = 1.442$ g cm⁻³, μ = 1.037 mm⁻¹, data collected = 14189, unique data = 5232 $(R_{int} = 0.042)$ of which 3582 with $I > 2\sigma(I)$, $R(F) = 0.0343$, $wR(F^2) =$ 0.0713 for 343 parameters.

CCDC 182/1779. See http://www.rsc.org/suppdata/cc/b0/b006440h/ for crystallographic files in .cif format.

- 1 W. Kaim and M. Morderosch, *Coord. Chem. Rev.*, 1994, **129**, 157.
- 2 A. Aumüller, P. Erk, G. Klebe, S. Hünig, J. von Schütz and H. Werner, *Angew. Chem., Int. Ed. Engl.*, 1986, **25**, 740; P. Erk, H.-J. Gross, S. Hünig, H. Meixner, H.-P. Werner, J. U. von Schütz and H. C. Wolf, *Angew. Chem., Int. Ed. Engl.*, 1989, **28**, 1245; R. Kato, H. Kobayashi and A. Kobayashi, *J. Am. Chem. Soc.*, 1989, **111**, 5224; S. Hünig, *J. Mater. Chem.*, 1995, **5**, 1469.
- 3 S. K. Hoffmann, P. J. Corvan, P. Singh, C. N. Sethulekshmi, R. M. Metzger and W. E. Hatfield, *J. Am. Chem. Soc.*, 1983, **105**, 4608; M. Schwartz and W. E. Hatfield, *Inorg. Chem.*, 1987, **26**, 2823; R. A. Heintz, H. Zhao, X. Ouyang, G. Grandinetti, J. Cowen and K. R. Dunbar, *Inorg. Chem.*, 1999, **38**, 144 and references therein.
- 4 J. M. Manriquez, G. T. Yee, R. S. McLean, A. J. Epstein and J. S. Miller, *Science*, 1991, **252**, 1415.
- 5 D. Coucouvanis, N. C. Baenziger and S. M. Johnson, *Inorg. Chem.*, 1974, **13**, 1191; F. J. Hollander, Y. L. Yp and D. Coucouvanis, *Inorg. Chem.*, 1976, **15**, 2230.
- 6 K. Sugimoto, T. Kuroda-Sowa, M. Maekawa and M. Munakata, *Chem. Commun.*, 1999, 455.
- 7 F. J. Weiher, L. R. Melby and R. E Benson, *J. Am. Chem. Soc.*, 1964, **86**, 4329; P. I. Clemenson, *Coord. Chem. Rev.*, 1990, **106**, 171; A. T. Comber, D. Beljonne, R. H. Friend, J. L. Bredas, A. Charlton, N. Robertson, A. E. Underhill, M. Kurmoo and P. Day, *Nature*, 1996, **380**, 144; N. Robertson, C. Bergemann, H. Becker, P. Agarwal, S. R. Julian, R. H. Friend, N. J. Hatton, A. E. Underhill and A. Kobayashi, *J. Mater. Chem.*, 1999, **9**, 1713.
- 8 B. R. O'Connor and F. N. Jones, *J. Org. Chem.*, 1970, **35**, 2002.
- 9 R. J. Pafford, J.-H.Chou and T. B. Rauchfuss, *Inorg. Chem.*, 1999, **38**, 3779.
- 10 C. U. Pittman, Jr., M. Narita and Y. F. Liang, *J. Org. Chem.*, 1976, **41**, 2855; G. C. Papavassiliou, D. J. Lagouvardos and W. C. Kakounis, *Z. Naturforsch. Teil B*, 1991, **46**, 1730.
- 11 G. V. Tormos, M. G. Bakker, P. Wang, M. V. Lakshmikantham, M. P. Cava and R. M. Metzger, *J. Am. Chem. Soc.*, 1995, **117**, 8528.
- 12 A. Davison, N. Edelstein, R. H. Holm and A. H. Maki, *Inorg. Chem.*, 1963, **2**, 1227.
- 13 B. Bleaney and K. D. Bowers, *Proc. R. Soc. (London) Ser. A*, 1952, **214**, 451.
- 14 O. Kahn, in *Molecular Magnetism*, VCH, Weinheim, 1993, ch. 6.